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30th International Physics Olympiad 
 

Padua, Italy 
 

Experimental competition 
 

Tuesday, July 20th, 1999 
 
 
 
Before attempting to assemble your equipment, read the problem text 
completely! 
 
Please read this first: 
 
1. The time available is 5 hours for one experiment only. 
2. Use only the pen provided. 
3. Use only the front side of the provided sheets. 
4. In addition to "blank" sheets where you may write freely, there is a set of Answer sheets 

where you must summarize the results you have obtained. Numerical results must be 
written with as many digits as appropriate; don’t forget the units. Try – whenever possible – 
to estimate the experimental uncertainties. 

5. Please write on the "blank" sheets the results of all your measurements and whatever else 
you deem important for the solution of the problem, that you wish to be evaluated during 
the marking process. However, you should use mainly equations, numbers, symbols, 
graphs, figures, and use as little text as possible. 

6. It's absolutely imperative that you write on top of each sheet that you'll use: your name 
(“NAME”), your country (“TEAM”), your student code (as shown on your identification tag, 
“CODE”), and additionally on the "blank" sheets: the progressive number of each sheet (from 
1 to N, “Page n.”) and the total number (N) of "blank" sheets that you use and wish to be 
evaluated (“Page total”); leave the “Problem” field blank.  It is also useful to write the 
number of the section you are answering at the beginning of each such section. If  you use 
some sheets for notes that you don’t wish to be evaluated by the marking team, just put a large 
cross through the whole sheet, and don’t number it. 

7. When you've finished, turn in all sheets in proper order (answer sheets first, then used 
sheets in order, unused sheets and problem text at the bottom) and put them all inside the 
envelope where you found them; then leave everything on your desk. You are not allowed 
to take anything out of the room. 

 
This problem consists of 11 pages (including this one and the answer sheets). 
 
This problem has been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities 
of Bologna, Naples, Turin and Trieste. 
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Torsion pendulum 

 
 
In this experiment we want to study a relatively complex mechanical system – a torsion 
pendulum – and investigate its main parameters. When its rotation axis is horizontal it 
displays a simple example of bifurcation. 
 

 
Available equipment 
 
1. A torsion pendulum, consisting of an outer body (not longitudinally uniform) and an inner threaded 

rod, with a stand as shown in figure 1 
2. A steel wire with handle 
3. A long hexagonal nut that can be screwed onto the pendulum threaded rod (needed only for the 

last exercise) 
4. A ruler and a right triangle template 
5. A timer 
6. Hexagonal wrenches 
7. A3 Millimeter paper sheets.  
8. An adjustable clamp 
9. Adhesive tape 
10. A piece of T-shaped rod 

 

 
The experimental apparatus is shown in figure 1; it is a torsion pendulum that can oscillate 
either around a horizontal rotation axis or around a vertical rotation axis. The rotation axis is 
defined by a short steel wire kept in tension. The pendulum has an inner part that is a threaded 
rod that may be screwed in and out, and can be fixed in place by means of a small hexagonal 
lock nut. This threaded rod can not be extracted from the pendulum body.  
 When assembling the apparatus in step 5 the steel wire must pass through the brass 
blocks and through the hole in the pendulum, then must be locked in place by keeping it 
stretched:  lock it first at one end, then use the handle to put it in tension and lock it at the 
other end. 
 
Warning: The wire must be put in tension only to guarantee the pendulum stability. It's 

not necessary to strain it with a force larger than about 30 N. While straining it, 
don't bend the wire against the stand, because it might break. 
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handle

steel wire

 
 

Figure 1: Sketch of the experimental apparatus when its rotation axis is horizontal. 
 

The variables characterizing the pendulum oscillations are: 
• the pendulum position defined by the angle θ  of deviation from the direction 

perpendicular to the plane of the stand frame, which is shown horizontal in figure 1.  
• the distance x between the free end of the inner threaded rod and the pendulum rotation 

axis 
• the period T of the pendulum oscillations. 
 

The parameters characterizing the system are:  
• the torsional elastic constant κ (torque = κ ⋅ angle) of the steel wire;  
• the masses M1 and M2 of the two parts of the pendulum (1: outer cylinder1 and 2: threaded 

rod);  
                                                 
1 Including the small hex locking nut. 
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• the distances R1 and R2 of the center of mass of each pendulum part (1: outer cylinder and 
2: threaded rod) from the rotation axis. In this case the inner mobile part (the threaded 
rod) is sufficiently uniform for computing R2 on the basis of its mass, its length   and the 

distance x. R2 is therefore a simple function of the other parameters;  
• the moments of inertia I1 and I2 of the two pendulum parts (1: outer cylinder and 2: 

threaded rod). In this case also we assume that the mobile part (the threaded rod) is 
sufficiently uniform for computing I2 on the basis of its mass, its length   and the 

distance x. I2 is therefore also a simple function of the other parameters;  
• the angular position θ0 (measured between the pendulum and the perpendicular to the 

plane of the stand frame) where the elastic recall torque is zero. The pendulum is locked 
to the rotation axis by means of a hex screw, opposite to the threaded rod; therefore θ0 
varies with each installation of the apparatus. 

 
Summing up, the system is described by 7 parameters: κ, M1, M2, R1, I1,  , θ0, but θ0 

changes each time the apparatus is assembled, so that only 6 of them are really constants and 
the purpose of the experiment is that of determining them, namely κ, M1, M2, R1, I1,  , 

experimentally. Please note that the inner threaded rod can’t be drawn out of the pendulum 
body, and initially only the total mass M1 + M2 is given (it is printed on each pendulum).  

In this experiment several quantities are linear functions of one variable, and you 
must estimate the parameters of these linear functions. You can use a linear fit, but alternative 
approaches are also acceptable. The experimental uncertainties of the parameters can be 
estimated from the procedure of the linear fit or from the spread of experimental data about 
the fit. 

The analysis also requires a simple formula for the moment of inertia of the inner 
part (we assume that its transverse dimensions are negligible with respect to its length, see 
figure 2):  
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Figure 2: In the analysis of the experiment we can use an equation (eq. 2) for the moment of inertia of 
a bar whose transverse dimensions are much less than its length. The moment of inertia must be 

computed about the rotation axis that in this figure crosses the s axis at s=0. 
 
Now follow these steps to find the 6 parameters M1, M2, κ, R1,  , I1: 
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1. The value of the total mass M1+M2 is given (it is printed on the pendulum), and you can 
find M1 and M2 by measuring the distance R(x) between the rotation axis and the center 
of mass of the pendulum. To accomplish this write first an equation for the position R(x) 
of the center of mass as a function of x  and of the parameters M1, M2, R1,  .       [0.5 

points] 
2.  Now measure R(x) for several values of x (at least 3) 2. Clearly such measurement must 

be carried out when the pendulum is not attached to the steel wire. Use these 
measurements and the previous result to find M1 and M2.        [3 points] 

 

x

θ

θ0

 
 

Figure 3: The variables θ  and x and the parameters θ0  and  are shown here. 

 
3. Find an equation for the pendulum total moment of inertia I as a function of x  and of the 

parameters M2, I1 and  .        [0.5 points] 

4. Write the pendulum equation of motion in the case of a horizontal rotation axis, as a 
function of the angle θ   (see figure 3) and of x, κ, θ0, M1, M2, the total moment of 
inertia I and the position R(x)  of the center of mass.        [1 point] 

                                                 
2 The small hex nut must be locked in place every time you move the threaded rod. Its mass is included in M1. 
This locking must be repeated also in the following, each time you move the threaded rod. 
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5. In order to determine κ, assemble now the pendulum and set it with its rotation axis 
horizontal. The threaded rod must initially be as far as possible inside the pendulum. 
Lock the pendulum to the steel wire, with the hex screw, at about half way between the 
wire clamps and in such a way that its equilibrium angle (under the combined action of 
weight and elastic recall) deviates sizeably from the vertical (see figure 4). Measure the 
equilibrium angle θe  for several values of x (at least 5).       [4 points] 

 

θe

 
Figure 4: In this measurement set the pendulum so that its equilibrium position deviates from the 

vertical. 
 
6. Using the last measurements, find κ.       [4.5 points] 
7. Now place the pendulum with its rotation axis vertical3, and measure its oscillation 

period for several values of x (at least 5). With these measurements, find I1 and  .      [4 

points] 
 

At this stage, after having found the system parameters, set the experimental 
apparatus as follows:  
• pendulum rotation axis horizontal 
• threaded rod as far as possible inside the pendulum 
• pendulum as vertical as possible near equilibrium 
• finally add the long hexagonal nut at the end of the threaded rod by screwing it a few 

turns (it can’t go further than that) 
 

In this way the pendulum may have two equilibrium positions, and the situation 
varies according to the position of the threaded rod, as you can also see from the generic 
graph shown in figure 5, of the potential energy as a function of the angle θ. 

The doubling of the potential energy minimum in figure 5 illustrates a phenomenon 
known in mathematics as bifurcation; it is also related to the various kinds of symmetry 
breaking that are studied in particle physics and statistical mechanics.  

 
 

                                                 
3 In order to stabilize it in this position, you may reposition the stand brackets. 
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1.8

 0.2

    θ [arbitrary units]  
 

Figure 5: Graph of the function θθθθ cos)(
2

)( 2
0 +−= aU  (which is proportional to the 

potential energy of this problem) as a function of θ, with θ0 ≠ 0. The various curves 
correspond to different a values as labeled in the figure; smaller values of a  (a < 1) 
correspond to the appearence of the bifurcation. In our case the parameter a is associated 
with the position x of the threaded rod. 

 
We can now study this bifurcation by measuring the period of the small oscillations 

about the equilibrium position:  
 
8. Plot the period4 T as a function of x. What kind of function is it? Is it increasing, 

decreasing or is it a more complex function?        [2.5 points] 
 
                                                 
4 You may be able to observe two equilibrium positions, but one of them is more stable than the other (see 
figure 5). Report and plot the period for the more stable one. 
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30th International Physics Olympiad 
 

Padua, Italy 
 

Theoretical competition 
 

Thursday, July 22nd, 1999 
 
 
 
Please read this first: 
 
1. The time available is 5 hours for 3 problems. 
2. Use only the pen provided. 
3. Use only the front side of the provided sheets. 
4. In addition to the problem texts, that contain the specific data for each problem, a sheet is 

provided containing a number of general physical constants that may be useful for the problem 
solutions. 

5. Each problem should be answered on separate sheets. 
6. In addition to "blank" sheets where you may write freely, for each problem there is an Answer 

sheet where you must summarize the results you have obtained. Numerical results must be 
written with as many digits as appropriate to the given data; don’t forget the units. 

7. Please write on the "blank" sheets whatever you deem important for the solution of the problem, 
that you wish to be evaluated during the marking process. However, you should use mainly 
equations, numbers, symbols, figures, and use as little text as possible. 

8. It's absolutely imperative that you write on top of each sheet that you'll use: your name 
(“NAME”), your country (“TEAM”), your student code (as shown on the identification tag, 
“CODE”), and additionally on the "blank" sheets: the problem number (“Problem”), the 
progressive number of each sheet (from 1 to N, “Page n.”) and the total number (N) of "blank" 
sheets that you use and wish to be evaluated for that problem (“Page total”). It is also useful to 
write the section you are answering at the beginning of each such section. If  you use some sheets 
for notes that you don’t wish to be evaluated by the marking team, just put a large cross through 
the whole sheet, and don’t number it. 

9. When you've finished, turn in all sheets in proper order (for each problem: answer sheet first, then 
used sheets in order; unused sheets and problem text at the bottom) and put them all inside the 
envelope where you found them; then leave everything on your desk. You are not allowed to take 
any sheets out of the room. 

 
This set of problems consists of 13 pages (including this one, the answer sheets and the page 

with the physical constants) 
 
These problems have been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities of 
Bologna, Naples, Turin and Trieste. 
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Problem 1  
 

Absorption of radiation by a gas 
 
 
A cylindrical vessel, with its axis vertical, contains a molecular gas at thermodynamic equilibrium. 
The upper base of the cylinder can be displaced freely and is made out of a glass plate; let's assume 
that there is no gas leakage and that the friction between glass plate and cylinder walls is just 
sufficient to damp oscillations but doesn't involve any significant loss of energy with respect to the 
other energies involved. Initially the gas temperature is equal to that of the surrounding environment. 
The gas can be considered as perfect within a good approximation. Let's assume that the cylinder 
walls (including the bases) have a very low thermal conductivity and capacity, and therefore the heat 
transfer between gas and environment is very slow, and can be neglected in the solution of this 
problem. 
 Through the glass plate we send into the cylinder the light emitted by a constant power laser; 
this radiation is easily transmitted by air and glass but is completely absorbed by the gas inside the 
vessel. By absorbing this radiation the molecules reach excited states, where they quickly emit 
infrared radiation returning in steps to the molecular ground state; this infrared radiation, however, is 
further absorbed by other molecules and is reflected by the vessel walls, including the glass plate. 
The energy absorbed from the laser is therefore transferred in a very short time into thermal 
movement (molecular chaos) and thereafter stays in the gas for a sufficiently long time. 
 We observe that the glass plate moves upwards; after a certain irradiation time we switch the 
laser off and we measure this displacement. 
 
1. Using the data below and - if necessary - those on the sheet with physical constants, compute 

the temperature and the pressure of the gas after the irradiation.      [2 points] 
2. Compute the mechanical work carried out by the gas as a consequence of the radiation 

absorption.       [1 point] 
3. Compute the radiant energy absorbed during the irradiation.      [2 points] 
4. Compute the power emitted by the laser that is absorbed by the gas, and the corresponding 

number of photons (and thus of elementary absorption processes) per unit time.    [1.5 
points] 

5. Compute the efficiency of the conversion process of optical energy into a change of 
mechanical potential energy of the glass plate.     [1 point] 

 
Thereafter the cylinder axis is slowly rotated by 90°, bringing it into a horizontal direction. The heat 
exchanges between gas and vessel can still be neglected. 
 
6. State whether the pressure and/or the temperature of the gas change as a consequence of 

such a rotation, and - if that is the case – what is its/their new value.      [2.5 points] 
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Data 
 
Room pressure: p0 = 101.3 kPa 
Room temperature: T0 = 20.0°C 
Inner diameter of the cylinder: 2r = 100 mm 
Mass of the glass plate: m = 800 g 
Quantity of gas within the vessel: n = 0.100 mol 
Molar specific heat at constant volume of the gas: cV = 20.8 J/(mol⋅K) 
Emission wavelength of the laser: λ = 514 nm 
Irradiation time: Δt = 10.0 s 
Displacement of the movable plate after irradiation: Δs = 30.0 mm 
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NAME__________________________ 
 
TEAM__________________________ 
 
CODE__________________________ 
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Answer sheet 

 
 

In this problem you are requested to give your results both as analytical expressions and with numerical data 
and units: write expressions first and then data (e.g. A=bc=1.23 m2). 

 

1. Gas temperature after the irradiation ………………………………………………………... 

 Gas pressure after the irradiation 

……………………………………………………………. 

 

2. Mechanical work carried out ………………………………………………………………... 

 

3. Overall optical energy absorbed by the gas ………………………………………………… 

 

4. Optical laser power absorbed by the gas …………………………………………………… 

 Absorption rate of photons (number of absorbed photons per unit time) …………………... 

  

5. Efficiency in the conversion of optical energy into change of mechanical potential energy 

of the glass plate ………………………………………………………………. 

 
6. Owing to the cylinder rotation, is there a pressure change?  YES 1    NO 1 

   If yes, what is its new value? ……………………………………………………… 

 Owing to the cylinder rotation, is there a temperature change?  YES 1   NO 1  

   If yes, what is its new value? ………………………………………………………
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Physical constants and general data 
 
 
In addition to the numerical data given within the text of the individual problems, the knowledge of 
some general data and physical constants may be useful, and you may find them among the 
following ones. These are nearly the most accurate data currently available, and they have thus a 
large number of digits; you are expected, however, to write your results with a number of digits that 
must be appropriate for each problem. 
 
Speed of light in vacuum: c = 299792458 m⋅s-1 
Magnetic permeability of vacuum: μ0 = 4π⋅10-7 H⋅m-1 
Dielectric constant of vacuum: ε0 = 8.8541878 pF⋅m-1 
Gravitational constant: G = 6.67259⋅10-11 m3/(kg⋅s²) 
Gas constant: R = 8.314510 J/(mol⋅K) 
Boltzmann's constant: k = 1.380658⋅10-23  J⋅K-1 
Stefan's constant: σ = 56.703 nW/(m²⋅K4) 
Proton charge: e = 1.60217733⋅10-19  C 
Electron mass: me = 9.1093897⋅10-31 kg 
Planck's constant: h = 6.6260755⋅10-34 J⋅s 
Base of centigrade scale: TK = 273.15 K 
Sun mass: MS = 1.991⋅1030 kg 
Earth mass: ME = 5.979⋅1024  kg 
Mean radius of Earth: rE = 6.373 Mm 
Major semiaxis of Earth orbit: RE = 1.4957⋅1011  m 
Sidereal day: dS = 86.16406 ks 
Year: y = 31.558150 Ms 
Standard value of the gravitational field at the Earth surface: g = 9.80665 m⋅s-2 
Standard value of the atmospheric pressure at sea level: p0 = 101325 Pa 
Refractive index of air for visibile light, at standard pressure and 15 °C: nair = 1.000277 
Solar constant: S  = 1355 W⋅m-2 
Jupiter mass: M = 1.901⋅1027 kg 
Equatorial Jupiter radius: RB = 69.8 Mm 
Average radius of Jupiter’s orbit: R  = 7.783⋅1011 m 
Jovian day: dJ = 35.6 ks  
Jovian year: yJ = 374.32 Ms 
π: 3.14159265 
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Problem 2 
 
 Magnetic field with a V-shaped wire 
 
 
Among the first successes of the interpretation by Ampère of magnetic phenomena, we have the 
computation of the magnetic field B generated by wires carrying an electric current, as compared to 
early assumptions originally made by Biot and Savart.  
 
A particularly interesting case is that of a very long thin wire, carrying a constant current i, made out 
of two rectilinear sections and bent in the form of a "V", with angular half-span1 α (see figure). 
According to Ampère's computations, the magnitude B of the magnetic field in a given point P lying 

on the axis of the "V", outside of it and at a distance d from its vertex, is proportional to ⎟
⎠
⎞

⎜
⎝
⎛

2
tan α . 

Ampère's work was later embodied in Maxwell's electromagnetic theory, and is universally 
accepted. 
 
 
 
 
 
 
 
 
 
 
 
Using our contemporary knowledge of electromagnetism, 
 
1. Find the direction of the field B in P.       [1 point] 

2.  Knowing that the field is proportional to ⎟
⎠
⎞

⎜
⎝
⎛

2
tan α , find the proportionality factor k in 

⎟
⎠
⎞

⎜
⎝
⎛=

2
tan)P( αkB .        [1.5 points] 

3. Compute the field B in a point P* symmetric to P with respect to the vertex, i.e. along the 
axis and at the same distance d, but inside the "V" (see figure).       [2 points] 

                                          
1 Throughout this problem α is expressed in radians 

α
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4. In order to measure the magnetic field, we place in P a small magnetic needle with moment 

of inertia I and magnetic dipole moment μ; it oscillates around a fixed point in a plane 
containing the direction of B. Compute the period of small oscillations of this needle as a 
function of B.       [2.5 points] 

 
 In the same conditions Biot and Savart had instead assumed that the magnetic field in P 

might have been (we use here the modern notation) 
d

iB 2
0)P(

π
αμ= , where μ0 is the magnetic 

permeability of vacuum. In fact they attempted to decide with an experiment between the two 
interpretations (Ampère's and Biot and Savart's) by measuring the oscillation period of the magnetic 
needle as a function of the "V" span. For some α values, however, the differences are too small to be 
easily measurable. 
 
5. If, in order to distinguish experimentally between the two predictions for the magnetic 

needle oscillation period T in  P, we need a difference by at least 10%, namely T1  > 1.10 T2  
(T1 being the Ampere prediction and T2 the Biot-Savart prediction) state in  which range, 
approximately, we must choose the "V" half-span α for being able to decide between the two 
interpretations.      [3 points] 

 
 
Hint 
 
Depending on which path you follow in your solution, the following trigonometric equation might 

be useful: 
α

αα
cos1

sin
2

tan
+

=⎟
⎠
⎞

⎜
⎝
⎛  
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Answer sheet 
 
In this problem write the requested results as analytic expressions, not as numerical values and 
units, unless explicitly indicated. 

 
1. Using the following sketch draw the direction of the B field (the length of the vector is not 

important). The sketch is a spatial perspective view. 

 
 
 
2. Proportionality factor k ………………………. 
 
3. Absolute value of the magnetic field intensity at the point P*, as described in the 

text………………………..……………… 

Draw the direction of the B field in the above sketch 
 

4. Period of the small angle oscillations of the magnet …………………………… 
 
5. Write for which range of α values (indicating here the numerical values of the range 

limits) the ratio between the oscillation periods, as predicted by Ampère and by Biot and 
Savart, is larger than 1.10:  

 
   ……………………. ………………………. 
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Problem 3 
 

A space probe to Jupiter 
 
 
We consider in this problem a method frequently used to accelerate space probes in the desired 
direction. The space probe flies by a planet, and can significantly increase its speed and modify 
considerably its flight direction, by taking away a very small amount of energy from the planet's 
orbital motion. We analyze here this effect for a space probe passing near Jupiter. 
 
The planet Jupiter orbits around the Sun along an elliptical trajectory, that can be approximated 
by a circumference of average radius R; in order to proceed with the analysis of the physical 
situation we must first: 
 
1. Find the speed V  of the planet along its orbit around the Sun.      [ 1.5 points] 
2. When the probe is between the Sun and Jupiter (on the segment Sun-Jupiter), find the 

distance from Jupiter  where the Sun's gravitational attraction balances that by Jupiter.       
[1 point] 

 
A space probe of mass m = 825 kg flies by Jupiter. For simplicity assume that the trajectory of 
the space probe is entirely in the plane of Jupiter's orbit; in this way we neglect the important 
case in which the space probe is expelled from Jupiter’s orbital plane. 
 We only consider what happens in the region where Jupiter's attraction overwhelms all 
other gravitational forces.  
 In the reference frame of the Sun's center of mass the initial speed of the space probe is v0 

=1.00·104 m/s (along  the positive y direction) while Jupiter's speed is along the negative x 
direction (see figure 1); by "initial speed" we mean the space probe speed when it's in the 
interplanetary space, still far from Jupiter but already in the region where the Sun's attraction is 
negligible with respect to Jupiter's. We assume that the encounter occurs in a sufficiently short 
time to allow neglecting the change of direction of Jupiter along its orbit around the Sun. We 
also assume that the probe passes behind Jupiter, i.e. the x coordinate is greater for the probe 
than for Jupiter when the y coordinate is the same. 
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Figure 1: View in the Sun center of mass system. O denotes Jupiter’s orbit, s is the space probe. 

  
3. Find the space probe's direction of motion (as the angle ϕ between its direction and the x 

axis) and its speed v’ in Jupiter's reference frame, when it's still far away from Jupiter.     
[2 points] 

4. Find the value of the space probe's total mechanical energy E in Jupiter's reference frame, 
putting – as usual – equal to zero the value of its potential energy at a very large distance, 
in this case when it is far enough to move with almost constant velocity owing to the 
smallness of all gravitational interactions.      [1 point] 

 
The space probe's trajectory in the reference frame of Jupiter is a hyperbola and its equation in 
polar coordinates in this reference frame is 
 

   
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= θcos'211

'
1

22

22

22 mMG
bEv

bv
GM

r
  (1) 

 
where b is the distance between one of the asymptotes and Jupiter (the so called impact 
parameter), E is the probe’s total mechanical energy in Jupiter’s reference frame, G is the 
gravitational constant, M is the mass of Jupiter, r and θ  are the polar coordinates (the radial 
distance and the polar angle). 
 Figure 2 shows the two branches of a hyperbola as described by equation (1); the 
asymptotes and the polar co-ordinates are also shown. Note that equation (1) has its origin in the 
"attractive focus" of the hyperbola. The space probe's trajectory is the attractive trajectory (the 
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emphasized branch). 
 

 
Figure 2 

 
5. Using equation (1) describing the space probe's trajectory, find the total angular deviation 

Δθ in Jupiter’s reference frame (as shown in figure 2) and express it as a function of 
initial speed v’ and impact parameter b.       [2 points] 

6. Assume that the probe cannot pass Jupiter at a distance less than three Jupiter radii from 
the center of the planet; find the minimum possible impact parameter and the maximum 
possible angular deviation.        [1 point] 

7. Find an equation for the final speed v” of the probe in the Sun's reference frame as a 
function only of Jupiter’s speed V, the probe’s initial speed v0 and the deviation angle Δθ.          
[1 point] 

8. Use the previous result to find the numerical value of the final speed v” in the Sun's 
reference frame when the angular deviation has its maximum possible value.          [0.5 
points] 
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Hint 
 
Depending on which path you follow in your solution, the following trigonometric formulas 
might be useful: 

βαβαβα

βαβαβα

sinsincoscos)cos(

sincoscossin)sin(

−=+

+=+
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Answer sheet 
 
Unless explixitly requested to do otherwise, in this problem  you are supposed to write your 
results both as analytic equations (first) and then as numerical results and units (e.g. A=bc=1.23 
m2). 
 

1. Speed V of Jupiter along its orbit …………………………… 

 

2. Distance from Jupiter where the two gravitational attractions balance each other 

……………………………………. 

 

3. Initial speed  v’ of the space probe in Jupiter’s reference frame ………………………………... 

and the angle ϕ its direction forms with the x axis, as defined in figure 1,  

……………………..……… 

 

4. Total energy E of the space probe in Jupiter’s reference frame 

…………………………………... 

 

5. Write a formula linking the probe’s deviation Δθ in Jupiter’s reference frame to the impact 

parameter b, the initial speed v’ and other known or computed quantities 

…………………………………………………………………………………………………….. 

 

6. If the distance from Jupiter’s center can’t be less than three Jovian radii, write the minimum 

impact parameter and the maximum angular deviation: b = ……………………………………; 

Δθ = …………………………………………………….. 

 

7. Equation for the final probe speed v” in the Sun’s reference frame as a function of V, v0  and Δθ 

…...………………………………..…………………………………………...……… 

 

8. Numerical value of the final speed in the Sun’s reference frame when the angular deviation has 

its maximum value as computed in step 6 ………….…………………………………………… 
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