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In physics, whenever we have an equality relation, both sides of the equation should be 

of the same type i.e. they must have the same dimensions. For example you cannot have a 

situation where the quantity on the right-hand side of the equation represents a length and 

the quantity on the left-hand side represents a time interval. Using this fact, sometimes one 

can nearly deduce the form of a physical relation without solving the problem analytically. 

For example if we were asked to find the time it takes for an object to fall from a height of 

h under the influence of a constant gravitational acceleration g , we could argue that one 

only needs to build a quantity representing a time interval, using the quantities g and h and 

the only possible way of doing this is 
2/1)/( ghaT = . Notice that this solution includes an 

as yet undetermined coefficient a which is dimensionless and thus cannot be determined, 

using this method. This coefficient can be a number such as 1, 21 , 3 , π , or any other 

real number. This method of deducing physical relations is called dimensional analysis. In 

dimensional analysis the dimensionless coefficients are not important and we do not need 

to write them. Fortunately in most physical problems these coefficients are of the order of 1 

and eliminating them does not change the order of magnitude of the physical quantities. 

Therefore, by applying the dimensional analysis to the above problem, one 

obtains
2/1)/( ghT = .  

 

Generally, the dimensions of a physical quantity are written in terms of the dimensions 

of four fundamental quantities: M  (mass), L  (length), T (time), and K  (temperature). 

The dimensions of an arbitrary quantity, x  is denoted by ][x . As an example, to express 

the dimensions of velocity v , kinetic energy kE , and heat capacity VC  we 

write:
1][ −= LTv , 

22][ −= TMLEk , 
122][ −−= KTMLCV . 

1 Fundamental Constants and Dimensional Analysis  

1.1 

Find the dimensions of the fundamental constants, i.e. the Planck's 

constant, h , the speed of light, c , the universal constant of gravitation,G , 

and the Boltzmann constant, Bk , in terms of the dimensions of length, mass, 

time, and temperature.  

0.8 

 

The Stefan-Boltzmann law states that the black body emissive power which is the total 

energy radiated per unit surface area of a black body in unit time is equal to 
4

σθ  where 

σ  is the Stefan-Boltzmann's constant and θ  is the absolute temperature of the black body. 

 

1.2 
Determine the dimensions of the Stefan-Boltzmann's constant in terms of the 

dimensions of length, mass, time, and temperature.  
0.5 

 

The Stefan-Boltzmann's constant is not a fundamental constant and one can write it in 

terms of fundamental constants i.e. one can write 
δγβασ BkGcha= . In this relation a  is a 

dimensionless parameter of the order of 1. As mentioned before, the exact value of a  is not 

significant from our viewpoint, so we will set it equal to 1. 
 

1.3 Findα , β ,γ , and δ  using dimensional analysis. 1.0 
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2 Physics of Black Holes  

In this part of the problem, we would like to find out some properties of black holes 

using dimensional analysis. According to a certain theorem in physics known as the no hair 

theorem, all the characteristics of the black hole which we are considering in this problem 

depend only on the mass of the black hole. One characteristic of a black hole is the area of 

its event horizon. Roughly speaking, the event horizon is the boundary of the black hole. 

Inside this boundary, the gravity is so strong that even light cannot emerge from the region 

enclosed by the boundary. 
 

We would like to find a relation between the mass of a black hole, m , and the area of 

its event horizon, A . This area depends on the mass of the black hole, the speed of light, 

and the universal constant of gravitation. As in 1.3 we shall write
γβα

mcGA = . 
 

2.1 Use dimensional analysis to findα , β , and γ . 0.8 
 

 From the result of 2.1 it becomes clear that the area of the event horizon of a black 

hole increases with its mass. From a classical point of view, nothing comes out of a 

black hole and therefore in all physical processes the area of the event horizon can only 

increase. In analogy with the second law of thermodynamics, Bekenstein proposed to 

assign entropy, S , to a black hole, proportional to the area of its event horizon i.e. 

AS η= . This conjecture has been made more plausible using other arguments.  

 

2.2 

Use the thermodynamic definition of entropy θdQdS =  to find the dimensions 

of entropy. 

dQ is the exchanged heat and θ  is the absolute temperature of the system. 

0.2 

 

2.3 
As in 1.3, express the dimensioned constant η  as a function of the fundamental 

constants h , c , G , and Bk . 
1.1 

 

Do not use dimensional analysis for the rest of problem, but you may use the results you 

have obtained in previous sections. 

  

3 Hawking Radiation 
 

With a semi-quantum mechanical approach, Hawking argued that contrary to the 

classical point of view, black holes emit radiation similar to the radiation of a black body at 

a temperature which is called the Hawking temperature. 
 

3.1 

Use 
2

mcE = , which gives the energy of the black hole in terms of its mass, 

and the laws of thermodynamics to express the Hawking temperature Hθ  of 

a black hole in terms of its mass and the fundamental constants. Assume that 

the black hole does no work on its surroundings.  

0.8 

 

3.2 

The mass of an isolated black hole will thus change because of the Hawking 

radiation. Use Stefan-Boltzmann's law to find the dependence of this rate of 

change on the Hawking temperature of the black hole, Hθ and express it in 

terms of mass of the black hole and the fundamental constants. 

0.7 
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3.3 
Find the time 

*
t , that it takes an isolated black hole of mass m  to evaporate 

completely i.e. to lose all its mass.  
1.1 

 

From the viewpoint of thermodynamics, black holes exhibit certain exotic behaviors. 

For example the heat capacity of a black hole is negative. 
 

3.4 Find the heat capacity of a black hole of mass m . 0.6 

 

 

4 Black Holes and the Cosmic Background Radiation 

 
Consider a black hole exposed to the cosmic background radiation. The cosmic 

background radiation is a black body radiation with a temperature Bθ  which fills the entire 

universe. An object with a total area A  will thus receive an energy equal to AB ×
4

θσ  per 

unit time. A black hole, therefore, loses energy through Hawking radiation and gains 

energy from the cosmic background radiation. 
 

4.1 

Find the rate of change of a black hole's mass, in terms of the mass of the 

black hole, the temperature of the cosmic background radiation, and the 

fundamental constants.  

0.8 

 

4.2 
At a certain mass, 

*
m , this rate of change will vanish. Find 

*
m and express it 

in terms of Bθ and the fundamental constants. 
0.4 

 

4.3 

Use your answer to 4.2 to substitute for Bθ  in your answer to part 4.1 and 

express the rate of change of the mass of a black hole in terms of m , 
*

m , 

and the fundamental constants. 

0.2 

 

4.4 
Find the Hawking temperature of a black hole at thermal equilibrium with 

cosmic background radiation. 
0.4 

 

4.5 
Is the equilibrium stable or unstable? Why? (Express your answer 

mathematically) 
0.6 
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Experimental Problem

  
Determination of energy band gap of semiconductor thin films  

I. Introduction 
Semiconductors can be roughly characterized as materials whose electronic properties 
fall somewhere between those of conductors and insulators. To understand 
semiconductor electronic properties, one can start with the photoelectric effect as a 
well-known phenomenon. The photoelectric effect is a quantum electronic 
phenomenon, in which photoelectrons are emitted from the matter through the 
absorption of sufficient energy from electromagnetic radiation (i.e. photons). The 
minimum energy which is required for the emission of an electron from a metal by 
light irradiation (photoelectron) is defined as "work function". Thus, only photons 
with a frequency 

 

higher than a characteristic threshold, i.e. with an energy h ( h 
is the Planck s constant) more than the material s work function, are able to knock 
out the photoelectrons.       

Figure 1. An illustration of photoelectron emission from a metal plate: The incoming photon 
should have an energy which is more than the work function of the material.  

In fact, the concept of work function in the photoelectric process is similar to the 
concept of the energy band gap of a semiconducting material. In solid state physics, 
the band gap gE is the energy difference between the top of the valence band and the 

bottom of the conduction band of insulators and semiconductors. The valence band is 
completely filled with electrons, while the conduction  band is empty however 
electrons can go from the valence band to the conduction band if they acquire 
sufficient energy (at least equal to the band gap energy).The semiconductor's 
conductivity strongly depends on its energy band gap.              

Figure 2. Energy band scheme for a semiconductor. 
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Band gap engineering is the process of controlling or altering the band gap of a 
material by controlling the composition of certain semiconductor alloys. Recently, it 
has been shown that by changing the nanostructure of a semiconductor it is possible 
to manipulate its band gap.  

In this experiment, we are going to obtain the energy band gap of a thin-film 
semiconductor containing nano-particle chains of iron oxide (Fe2O3) by using an 
optical method. To measure the band gap, we study the optical absorption properties 
of the transparent film using its optical transmission spectrum. As a rough statement, 
the absorption spectra shows a sharp increase when the energy of the incident photons 
equals to the energy band gap.  

II. Experimental Setup 
You will find the following items on your desk: 
1. A large white box containing a spectrometer with a halogen lamp. 
2. A small box containing a sample, a glass substrate, a sample-holder, a grating, 

and a photoresistor. 
3. A multimeter. 
4. A calculator. 
5. A ruler.  
6. A card with a hole punched in its center. 
7. A set of blank labels.  

The spectrometer contains a goniometer with a precision of 5 . The Halogen lamp 
acts as the source of radiation and is installed onto the fixed arm of the spectrometer 
(for detailed information see the enclosed "Description of Apparatus").     

The small box contains the following items: 
1. A sample-holder with two windows: a glass substrate coated with Fe2O3 film 

mounted on one window and an uncoated glass substrate mounted on the other. 
2. A photoresistor mounted on its holder, which acts as a light detector. 
3. A transparent diffraction grating (600 line/mm).     

A schematic diagram of the setup is shown in Figure 3:             

Figure 3. Schematic diagram of the experimental setup. 

Note: Avoid touching the surface of any component in the small box! 
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III. Methods 
To obtain the transmission of a film at each wavelength, filmT , one can use the 

following formula: 
)(/)()( glassfilmfilm IIT

 
   (1) 

where filmI and glassI are respectively the intensity of the light transmitted from the 

coated glass substrate, and the intensity of the light transmitted from the uncoated 
glass slide. The value of I can be measured using a light detector such as a 
photoresistor. In a photoresistor, the electrical resistance decreases when the intensity 
of the incident light increases.  Here, the value of I can be determined from the 
following relation: 

1)()( RCI

  

(2) 
where R

 

is the electrical resistance of the photoresistor, C is a -dependent 
coefficient.  

The transparent grating on the spectrometer diffracts different wavelengths of 
light into different angles. Therefore, to study the variations of T

 

as a function of , 
it is enough to change the angle of the photoresistor ( ) with respect to the optical 
axis (defined as the direction of the incident light beam on the grating), as shown in 
Figure 4.  
From the principal equation of a diffraction grating: 

]sin)[sin( 00dn  (3) 

one can obtain the angle 

 

corresponding to a particular : n

 

is an integer number 
representing the order of diffraction, d is the period of the grating, and o  is the angle 

the normal vector to the surface of grating makes with the optical axis (see Fig. 4). (In 
this experiment we shall try to place the grating perpendicular to the optical axis 
making 0o , but since this cannot be achieved with perfect precision the error 

associated with this adjustment will be measured in task 1-e.)          

Figure 4. Definition of the angles involved in Equation 3. 

Experimentally it has been shown that for photon energies slightly larger than 
the band gap energy, the following relation holds: 

)( gEhAh

 

(4) 

where 

 

is the absorption coefficient of the film, A  is a constant that depends on the 
film s material, and is the constant determined by the absorption mechanism of the 
film s material and structure. Transmission is related to the value of 

 

through the 
well-known absorption relation:  

o 

Grating 

o 

'
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t)(-expfilmT  (5) 

where t  is thickness of the film.  

IV. Tasks:  

0. Your apparatus and sample box (small box containing the sample holder) are 
marked with numbers. Write down the Apparatus number and Sample number in 
their appropriate boxes, in the answer sheet.  

1. Adjustments and Measurements:

   

1-a 

 

Check the vernier scale and report the maximum precision 
( ). 

0.1 pt 

 

Note: Magnifying glasses are available on request.  

Step1: 
To start the experiment, turn on the Halogen lamp to warm up. It would be better not 
to turn off the lamp during the experiment. Since the halogen lamp heats up during 
the experiment, please be careful not to touch it.  

Place the lamp as far from the lens as possible, this will give you a parallel light 
beam.   

We are going to make a rough zero-adjustment of the goniometer without utilizing 
the photoresistor. Unlock the rotatable arm with screw 18 (underneath the arm), and 
visually align the rotatable arm with the optical axis. Now, firmly lock the rotatable 
arm with screw 18. Unlock the vernier with screw 9 and rotate the stage to 0 on the 
vernier scale. Now firmly lock the vernier with screw 9 and use the vernier fine-
adjustment  screw (screw 10) to set the zero of the vernier scale. Place the grating 
inside its holder. Rotate the grating's stage until the diffraction grating is roughly 
perpendicular to the optical axis. Place the card with a hole in front of the light source 
and position the hole such that a beam of light is incident on the grating. Carefully 
rotate the grating so that the spot of reflected light falls onto the hole. Then the 
reflected light beam coincides with the incident beam. Now lock the grating's stage 
by tightening screw 12.  

 

By measuring the distance between the hole and the grating, 
estimate the precision of this adjustment ( o ). 0.3 pt 

1-b 

 

Now, by rotating the rotatable arm, determine and report the 
range of angles for which the first-order diffraction of visible light 
(from blue to red) is observed. 

0.2 pt 

 

Step 2: 
Now, install the photoresistor at the end of the rotatable arm. To align the system 
optically, by using the photoresistor, loosen the screw 18, and slightly turn the 
rotatable arm so that the photoresistor shows a minimum resistance. For fine 
positioning, firmly lock screw 18, and use the fine adjustment screw of the rotatable 
arm. 
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Use the vernier fine-adjustment screw to set the zero of the vernier scale.   

 
Report the measured minimum resistance value ( )0(

minR ).  0.1 pt 

1-c 

 
Your zero-adjustment is more accurate now, report the 

precision of this new adjustment ( o ) .  

Note: o

 

is the error in this alignment i.e. it is a measure of 

misalignment of the rotatable arm and the optical axis. 

0.1 pt 

  

Hint: After this task you should tighten the fixing screws of the vernier. 
Moreover, tighten the screw of the photoresistor holder to fix it and do not remove it 
during the experiment.   

Step 3: 
Move the rotatable arm to the region of the first-order diffraction. Find the angle at 
which the resistance of the photoresistor is minimum (maximum light intensity). 
Using the balancing screws, you can slightly change the tilt of the grating s stage, to 
achieve an even lower resistance value.   

1-c 

 

Report the minimum value of the observed resistance ( )1(
minR ) in 

its appropriate box. 
0.1 pt 

  

It is now necessary to check the perpendicularity of the grating for zero adjustment, 
again. For this you must use the reflection-coincidence method of Step 1.   

Important: From here onwards carry out the experiment in dark (close the cover).  

Measurements: Screw the sample-holder onto the rotatable arm. Before you start the 
measurements, examine the appearance of your semiconductor film (sample). Place 
the sample in front of the entrance hole 1S on the rotatable arm such that a uniformly 
coated part of the sample covers the hole. To make sure that every time you will be 
working with the same part of the sample make proper markings on the sample holder 
and the rotatable arm with blank labels.  

Attention: At higher resistance measurements it is necessary to allow the 
photoresistor to relax, therefore for each measurement in this range wait 3 to 4 
minutes before recording your measurement.  

 

Measure the resistance of the photoresistor for the uncoated 
glass substrate and the glass substrate coated with semiconductor 
layer as a function of the angle 

 

(the value read by the 
goniometer for the angle between the photoresistor and your 
specified optical axis). Then fill in Table 1d. Note that you need 
at least 20 data points in the range you found in Step 1b. Carry 
out your measurement using the appropriate range of your 
ohmmeter. 

2.0 pt 
1-d 

 

Consider the error associated with each data point. Base your 1.0 pt 
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answer only on your direct readings of the ohmmeter.   

 
Step 4: 
The precision obtained so far is still limited since it is impossible to align the 
rotatable arm with the optical axis and/or position the grating perpendicular to the 
optical axis with 100% precision. So we still need to find the asymmetry of the 
measured transmission at both sides of the optical axis (resulting from the deviation 
of the normal to the grating surface from the optical axis ( o )). 

To measure this asymmetry, follow these steps:   

 

First, measure filmT at 20 . Then, obtain values for filmT 

at some other angles around 20 . Complete Table 1e (you can 
use the values obtained in Table 1d).  

0.6 pt 
1-e 

 

Draw filmT  versus 

 

and visually draw a curve. 0.6 pt 

On your curve find the angle 

 

for which the value of filmT is equal to the filmT that 

you measured at o20 (
)20(

|
filmfilm

TT
). Denote the difference of this angle 

with 20  as , in other words: 
20             (6)  

1-e 

 

Report the value of 

 

in the specified box. 0.2 pt 

 

Then for the first-order diffraction, Eq. (3) can be simplified as follows: 
)2/sin(d , (7) 

where  is the angle read on the goniometer.   

2. Calculations:

  

2-a 

 

Use Eq. (7) to express 

 

in terms of the errors of the other 
parameters (assume d is exact and there is no error is associated 
with it). Also using Eqs. (1), (2), and (5), express filmT

 

in terms 

of R  and R . 

0.6 pt 

 

2-b 

 

Report the range of  values of  over the region of first-order 
diffraction.  

0.3 pt 

 

2-c 

 

Based on the measured parameters in Task 1, complete Table 
2c for each . Note that the wavelength should be calculated using 
Eq. (7).  

2.4 pt 

  

Plot 1
glassR and 1

filmR as a function of wavelength together on 

the same diagram. Note that on the basis of Eq. (2) behaviors of 
1

glassR and 1
filmR can reasonably give us an indication of the way 

glassI  and filmI  behave, respectively. 

1.5 pt 
2-d  

 

In Table 2d, report the wavelengths at which glassR and 

filmR attain their minimum values.   
0.4 pt 
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2-e 

 
For the semiconductor layer (sample) plot filmT as a function of 

wavelength. This quantity also represents the variation of the film 
transmission in terms of wavelength. 

1.0 pt 

 
3. Data analysis:

 
By substituting 21

 

and 071.0A ((eV)1/2/nm) in Eq. (4) one can find values for 

gE  and t  in units of eV and nm, respectively. This will be accomplished by plotting a 

suitable diagram in an yx

 

coordinate system and doing an extrapolation in the 
region satisfying this equation.    

3-a 

 

By assuming hx

 

and 2)( hty

 

and by using your 
measurements in Task 1, fill in Table 3a for wavelengths around 
530 nm and higher. Express your results ( x

 

and y ) with the 
correct number of significant figures (digits), based on the 
estimation of the error on one single data point. 
Note that h

 

should be calculated in units of eV and wavelength 

in units of nm. Write the unit of each variable between the 
parentheses in the top row of the table.  

2.4 pt 

  

Plot y  versus x .  

 

Note that the y

 

parameter corresponds to the absorption of the 
film. Fit a line to the points in the linear region around 530 nm. 3-b 

 

Specify the region where Eq. (4) is satisfied, by reporting the 
values of the smallest and the largest x-coordinates for the data 
points to which you fit the line.  

2.6 
pt 

 

3-c 

 

Call the slope of this line m , and find an expression for the 
film thickness ( t ) and its error ( t ) in terms of m and A (consider 
A  to have no error).  

0.5 pt 

 

3-d 

 

Obtain the values of gE and t and their associated errors in 

units of eV and nm, respectively. Fill in Table 3d.  
3.0 pt 

  

Some useful physical constants required for your analysis:  

 

Speed of the light:  81000.3c  m/s 

 

Plank s constant:  341063.6h  J.s 

 

Electron charge:     191060.1e  C    
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In this problem we deal with a simplified model of accelerometers designed to activate the safety 

air bags of automobiles during a collision. We would like to build an electromechanical system in 

such a way that when the acceleration exceeds a certain limit, one of the electrical parameters of 

the system such as the voltage at a certain point of the circuit will exceed a threshold and the air 

bag will be activated as a result. 

 

Note: Ignore gravity in this problem. 

 

1 Consider a capacitor with parallel plates as in Figure 1. The area of each plate in the capacitor 

is A and the distance between the two plates is d . The distance between the two plates is 

much smaller than the dimensions of the plates. One of these plates is in contact with a wall 

through a spring with a spring constant k , and the other plate is fixed. When the distance 

between the plates is d  the spring is neither compressed nor stretched, in other words no 

force is exerted on the spring in this state. Assume that the permittivity of the air between the 

plates is that of free vacuum 
0ε . The capacitance corresponding to this distance between the 

plates of the capacitor is dAC 00 ε= . We put charges Q+  and Q−  on the plates and let 

the system achieve mechanical equilibrium.  

 

 
Figure 1 

 

1.1 Calculate the electrical force, 
EF , exerted by the plates on each other. 0.8 

 

1.2 Let x  be the displacement of the plate connected to the spring. Find x .  0.6 
 

1.3 
In this state, what is the electrical potential difference V between the plates of the 

capacitor in terms of Q , A , d , k ? 
0.4 

 

1.4 
Let C  be the capacitance of the capacitor, defined as the ratio of charge to potential 

difference. Find 
0CC  as a function of Q , A , d   and k .  

0.3 

 

1.5 What is the total energy, U , stored in the system in terms of Q , A , d  and k ? 0.6 

 

Figure 2, shows a mass M which is attached to a conducting plate with negligible mass and also 

to two springs having identical spring constants k .  The conducting plate can move back and 

forth in the space between two fixed conducting plates. All these plates are similar and have the 

same area A . Thus these three plates constitute two capacitors. As shown in Figure 2, the fixed 

plates are connected to the given potentials V  and V− , and the middle plate is connected 

k  

d  



 
 

 

 2 

through a two-state switch to the ground. The wire connected to the movable plate does not 

disturb the motion of the plate and the three plates will always remain parallel. When the whole 

complex is not being accelerated, the distance from each fixed plate to the movable plate is 

d which is much smaller than the dimensions of the plates. The thickness of the movable plate 

can be ignored.  
 

 
Figure 2 

 

The switch can be in either one of the two states α  and β . Assume that the capacitor complex is 

being accelerated along with the automobile, and the acceleration is constant. Assume that during 

this constant acceleration the spring does not oscillate and all components of this complex 

capacitor are in their equilibrium positions, i.e. they do not move with respect to each other, and 

hence with respect to the automobile.  

Due to the acceleration, the movable plate will be displaced a certain amount x  from the middle 

of the two fixed plates.  

 

2 Consider the case where the switch is in state α  i.e. the movable plate is connected to the 

ground through a wire, then 

 

2.1 Find the charge on each capacitor as a function of  x . 0.4 
 

2.2 Find the net electrical force on the movable plate, 
EF , as a function of x .  0.4 

    

2.3 
Assume xd >>  and terms of order 

2
x can be ignored compared to terms of order 

2
d . Simplify the answer to the previous part.  

0.2 

 

2.4 
Write the total force on the movable plate (the sum of the electrical and the spring 

forces) as xkeff−  and give the form of 
effk .  

0.7 

 

2.5 Express the constant acceleration a  as a function of x . 0.4 

Movable 

plate 

a  

Fixed Plate 
Fixed Plate 

V  

α  β
 

SC  

V  

M  

k  k  
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3 Now assume that the switch is in state β  i.e. the movable plate is connected to the ground 

through a capacitor, the capacitance of which is 
SC  (there is no initial charge on the 

capacitors). If the movable plate is displaced by an amount x  from its central position,  

 

3.1 
Find 

SV  the electrical potential difference across the capacitor 
SC  as a function of 

x . 
1.5 

 

3.2 
Again assume that xd >>  and ignore terms of order 2

x  compared to terms of 

order 2
d . Simplify your answer to the previous part. 

0.2 

 

4 We would like to adjust the parameters in the problem such that the air bag will not be 

activated in normal braking but opens fast enough during a collision to prevent the driver’s 

head from colliding with the windshield or the steering wheel. As you have seen in Part 2, the 

force exerted on the movable plate by the springs and the electrical charges can be 

represented as that of a spring with an effective spring constant 
effk . The whole capacitor 

complex is similar to a mass and spring system of mass M and spring constant 
effk  under the 

influence of a constant acceleration a , which in this problem is the acceleration of the 

automobile.  
 

Note: In this part of the problem, the assumption that the mass and spring are in equilibrium under 

a constant acceleration and hence are fixed relative to the automobile, no longer holds.  
 

Ignore friction and consider the following numerical values for the parameters of the problem: 
 

cm0.1=d , 22 m105.2 −×=A , N/m102.4 3×=k , 2212

0 /NmC1085.8 −×=ε , 

V12=V , kg15.0=M . 
 

4.1 

Using this data, find the ratio of the electrical force you calculated in section 2.3 to 

the force of the springs and show that one can ignore the electrical forces compared 

to the spring forces. 

0.6 

 

Although we did not calculate the electrical forces for the case when the switch is in the state β , 

it can be shown that in this situation, quite similarly, the electrical forces are as small and can be 

ignored.  
 

4.2 

If the automobile while traveling with a constant velocity, suddenly brakes with a 

constant acceleration a , what is the maximum displacement of the movable plate? 

Give your answer in parameter.  

0.6 

 

Assume that the switch is in state β  and the system has been designed such that when the 

electrical voltage across the capacitor reaches V15.0=SV , the air bag is activated. We would 

like the air bag not to be activated during normal braking when the automobile’s acceleration is 

less than the acceleration of gravity 28.9 smg = , but be activated otherwise.  
 

4.3 How much should 
SC  be for this purpose?   0.6 

 



 
 

 

 4 

We would like to find out if the air bag will be activated fast enough to prevent the driver’s head 

from hitting the windshield or the steering wheel. Assume that as a result of collision, the 

automobile experiences a deceleration equal to g  but the driver’s head keeps moving at a 

constant speed. 
 

4.4 
By estimating the distance between the driver’s head and the steering wheel, find 

the time 
1t  it takes before the driver’s head hits the steering wheel.  

0.8 

 

4.5 
Find the time 

2t  before the air bag is activated and compare it to
1t . Is the air bag 

activated in time? Assume that airbag opens instantaneously. 
0.9 
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Two stars rotating around their center of mass form a binary star system. Almost half of the stars 

in our galaxy are binary star systems. It is not easy to realize the binary nature of most of these 

star systems from Earth, since the distance between the two stars is much less than their distance 

from us and thus the stars cannot be resolved with telescopes. Therefore, we have to use either 

photometry or spectrometry to observe the variations in the intensity or the spectrum of a 

particular star to find out whether it is a binary system or not. 

 

Photometry of Binary Stars 
 

If we are exactly on the plane of motion of the two stars, then one star will occult (pass in front 

of) the other star at certain times and the intensity of the whole system will vary with time from 

our observation point. These binary systems are called ecliptic binaries. 

 

1 Assume that two stars are moving on circular orbits around their common center of mass with 

a constant angular speed ω  and we are exactly on the plane of motion of the binary system. 

Also assume that the surface temperatures of the stars are 1T  and 2T  )( 21 TT > , and the 

corresponding radii are 1R and 2R  ( )21 RR > , respectively. The total intensity of light, 

measured on Earth, is plotted in Figure 1 as a function of time. Careful measurements 

indicate that the intensities of the incident light from the stars corresponding to the minima 

are respectively 90 and 63 percent of the maximum intensity, 0I , received from both stars 

( )  W/m104.8 2-9

0 ×=I . The vertical axis in Figure 1 shows the ratio 0II  and the 

horizontal axis is marked in days. 

 

 

 
Figure 1. The relative intensity received from the binary star system as a 

function of time. The vertical axis has been scaled by 
2-9

0  W/m104.8×=I . 

Time is given in days.  

 

1.1 

Find the period of the orbital motion. Give your answer in seconds up to two 

significant digits.  

What is the angular frequency of the system in rad/sec? 

0.8 

 

I/I0  

0II
 = 0.63 

0II
 = 0.90 

1.0 

0.8 

0.6 

0.4 

0.2 

Time (days) 1.0 2.0 3.0 4.0 5.0 6.0 
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To a good approximation, the receiving radiation from a star is a uniform black body radiation 

from a flat disc with a radius equal to the radius of the star. Therefore, the power received from 

the star is proportional to 
4AT  where A  is area of the disc and   T  is the surface temperature of 

the star.  

 
 

1.2 Use the diagram in Figure 1 to find the ratios 21 TT and 21 RR . 1.6 

 

Spectrometry of Binary Systems 
 

In this section, we are going to calculate the astronomical properties of a binary star by using 

experimental spectrometric data of the binary system. 
 

Atoms absorb or emit radiation at their certain characteristic wavelengths. Consequently, the 

observed spectrum of a star contains absorption lines due to the atoms in the star’s atmosphere.  

Sodium has a characteristic yellow line spectrum (D1 line) with a wavelength 5895.9Ǻ (10 Ǻ = 1 

nm). We examine the absorption spectrum of atomic Sodium at this wavelength for the binary 

system of the previous section. The spectrum of the light that we receive from the binary star is 

Doppler-shifted, because the stars are moving with respect to us. Each star has a different speed. 

Accordingly the absorption wavelength for each star will be shifted by a different amount. Highly 

accurate wavelength measurements are required to observe the Doppler shift since the speed of 

the stars is much less than the speed of light. The speed of the center of mass of the binary system 

we consider in this problem is much smaller than the orbital velocities of the stars. Hence all the 

Doppler shifts can be attributed to the orbital velocity of the stars.  Table 1 shows the measured 

spectrum of the stars in the binary system we have observed. 

 

 

Table 1: Absorption spectrum of the binary star system for the Sodium D1  line 

 

 

      

2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 t/days 

5894.6 5894.1 5894.3 5895.1 5896.2 5897.2 5897.7 5897.5 
1λ  (Å) 

5898.1 5899.0 5898.7 5897.3 5896.2 5893.7 5892.8 5893.1 
2λ  (Å) 

4.8 4.5 4.2 3.9 3.6 3.3 3.0 2.7 t/days 

5894.3 5895.0 5896.2 5897.2 5897.7 5897.3 5896.7 5895.6 
1λ  (Å) 

5898.7 5897.4 5896.2 5893.7 5892.8 5893.1 5894.5 5896.4 
2λ  (Å) 

(Note: There is no need to make a graph of the data in this table) 

2 Using Table 1,  

 

2.1 
Let 1v and 2v be the orbital velocity of each star. Find 1v and 2v . 

The speed of light m/s100.3 8×=c . Ignore all relativistic effects. 
1.8 

 

2.2 Find the mass ratio of the stars ( )21 mm . 0.7 

 

2.3 
Let 1r  and 2r  be the distances of each star from their center of mass.  

Find 1r  and 2r . 
0.8 
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2.4 Let r  be the distance between the stars. Find r . 0.2 

 

3  The gravitational force is the only force acting between the stars.  
 

3.1 
Find the mass of each star up to one significant digit.  

The universal gravitational constant  
21311 skgm107.6 −−−×=G . 

1.2 

 

General Characteristics of Stars 
 
4 Most of the stars generate energy through the same mechanism. Because of this, there is an 

empirical relation between their mass, M , and their luminosity, L  , which is the total 

radiant power of the star. This relation could be written in the form ( )α

SunSun MMLL = . 

Here, kg100.2 30×=SunM  is the solar mass and, W109.3 26×=SunL  is the solar 

luminosity. This relation is shown in a log-log diagram in Figure 2.  

 

 
Figure 2. The luminosity of a star versus its mass varies as a power law. The diagram is log-

log. The star-symbol represents Sun with a mass of g100.2 30 k×  and luminosity of 

W109.3 26× . 

 

 

 

 
4.1 Find α  up to one significant digit. 0.6 

 

4.2 
Let 1L  and 2L  be the luminosity of the stars in the binary system studied in the 

previous sections. Find 1L  and 2L . 
0.6 

 

4.3 
What is the distance, d , of the star system from us in light years?  

To find the distance you can use the diagram of Figure 1. One light year is the 

distance light travels in one year. 

0.9 



 

 

 4 

 

4.4 
What is the maximum angular distance,θ , between the stars from our observation 

point? 
0.4 

 

4.5 
What is the smallest aperture size for an optical telescope, D , that can resolve these 

two stars? 
0.4 
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