Algebra

 $\begin{vmatrix} 1 \\ a_0, a_1, a_2, \ldots \end{vmatrix}$ is a sequence of real numbers such that

$$a_{n+1} = [a_n] \cdot \{a_n\}$$

prove that exist j such that for every $i \ge j$ we have $a_{i+2} = a_i$.

- 3 The sequence $c_0, c_1, ..., c_n, ...$ is defined by $c_0 = 1, c_1 = 0$, and $c_{n+2} = c_{n+1} + c_n$ for $n \ge 0$. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that $x = \sum_{j \in J} c_j, y = \sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β , and M with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality $m < \alpha x + \beta y < M$ if and only if $(x, y) \in S$.

Remark: A sum over the elements of the empty set is assumed to be 0.

4 Prove the inequality:

$$\sum_{i < j} \frac{a_i a_j}{a_i + a_j} \le \frac{n}{2(a_1 + a_2 + \dots + a_n)} \cdot \sum_{i < j} a_i a_j$$

for positive reals $a_1, a_2, ..., a_n$.

5 If a, b, c are the sides of a triangle, prove that

$$\sum_{\text{cyc}} \frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \le 3$$

6 Determine the least real number M such that the inequality $|ab(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 - b^2) + bc(b^2 - c^2) + bc(b^2 - c^2) + ca(c^2 - a^2) + bc(b^2 - c^2) + bc(b^2 - c^2$

Combinatorics

1 We have $n \ge 2$ lamps $L_1, ..., L_n$ in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp L_i and its neighbours (only one neighbour for i = 1 or i = n, two neighbours for other i) are in the same state, then L_i is switched off; otherwise, L_i is switched on. Initially all the lamps are off except the leftmost one which is on.

(a) Prove that there are infinitely many integers n for which all the lamps will eventually be off. (b) Prove that there are infinitely many integers n for which the lamps will never be all off.

- 2 Let P be a regular 2006-gon. A diagonal is called *good* if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called *good*. Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.
- 3 Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let a(P) be the number of vertices of P, and let b(P) be the number of points of S which are outside P. A line segment, a point, and the empty set are considered as convex polygons of 2, 1, and 0 vertices respectively. Prove that for every real number x:

 $\sum_{P} x^{a(P)} (1-x)^{b(P)} = 1$, where the sum is taken over all convex polygons with vertices in S. Alternative formulation:

Let M be a finite point set in the plane and no three points are collinear. A subset A of M will be called round if its elements is the set of vertices of a convex A-gon V(A). For each round subset let r(A) be the number of points from M which are exterior from the convex A-gon V(A). Subsets with 0, 1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$P_A(x) = x^{|A|} (1-x)^{r(A)}.$$

Show that the sum of polynomials for all round subsets is exactly the polynomial P(x) = 1.

4 A cake has the form of an $n \ge n$ square composed of n^2 unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement A. Let B be another such arrangement. Suppose that every grid rectangle with

one vertex at the top left corner of the cake contains no fewer strawberries of arrangement B than of arrangement A.

Prove that arrangement B can be obtained from A by performing a number of switches, defined as follows: A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.

5 An (n, k) – tournament is a contest with n players held in k rounds such that:

(i) Each player plays in each round, and every two players meet at most once. (ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k) – tournament.

- 6 A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ} - 120^{\circ}$ unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length k in T contains at most k holes, for $1 \le k \le n$.
- 7 Consider a convex polyheadron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyheadron *antipodal* if there exist two parallel planes passing through these points and such that the polyheadron is contained between these planes. Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoint edges. Determine the difference A B in terms of the numbers of vertices, edges, and faces.

Geometry

1 Let ABC be triangle with incenter I. A point P in the interior of the triangle satisfies

$$\angle PBA + \angle PCA = \angle PBC + \angle PCB.$$

Show that $AP \ge AI$, and that equality holds if and only if P = I.

- 2 Let ABC be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that $\frac{AK}{KB} = \frac{DL}{LC}$. Suppose that there are points P and Q on the line segment KL satisfying $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC$. Prove that the points P, Q, B and C are concylic.
- 3 Consider a convex pentagon ABCDE such that

$$\angle BAC = \angle CAD = \angle DAE$$
 , $\angle ABC = \angle ACD = \angle ADE$

Let P be the point of intersection of the lines BD and CE. Prove that the line AP passes through the midpoint of the side CD.

- 4 Let ABC be a triangle such that $\widehat{ACB} < \widehat{BAC} < \frac{\pi}{2}$. Let D be a point of [AC] such that BD = BA. The incircle of ABC touches [AB] at K and [AC] at L. Let J be the center of the incircle of BCD. Prove that (KL) intersects [AJ] at its middle.
- 5 In triangle ABC, let J be the center of the excircle tangent to side BC at A_1 and to the extensions of the sides AC and AB at B_1 and C_1 respectively. Suppose that the lines A_1B_1 and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_1 to line DJ. Determine the angles $\angle BEA_1$ and $\angle AEB_1$.
- 6 Circles w_1 and w_2 with centres O_1 and O_2 are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of w_1 and w_2 at D. Let AB be the diameter of w perpendicular to t, so that A, E, O_1 are on the same side of t. Prove that lines AO_1 , BO_2 , EF and t are concurrent.
- 7 In a triangle ABC, let M_a , M_b , M_c be the midpoints of the sides BC, CA, AB, respectively, and T_a , T_b , T_c be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not containing the vertices A, B, C, respectively. For $i \in \{a, b, c\}$, let w_i be the circle with M_iT_i as diameter. Let p_i be the common external common tangent to the circles w_j and w_k (for all $\{i, j, k\} = \{a, b, c\}$) such that w_i lies on the opposite side of p_i than w_j and w_k do. Prove that the lines p_a , p_b , p_c form a triangle similar to ABC and find the ratio of similitude.

- 8 Let ABCD be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that $\angle PAB + \angle PDC \leq 90^{\circ}$ and $\angle PBA + \angle PCD \leq 90^{\circ}$. Prove that $AB + CD \geq BC + AD$.
- 9 Points A_1 , B_1 , C_1 are chosen on the sides BC, CA, AB of a triangle ABC respectively. The circumcircles of triangles AB_1C_1 , BC_1A_1 , CA_1B_1 intersect the circumcircle of triangle ABC again at points A_2 , B_2 , C_2 respectively ($A_2 \neq A, B_2 \neq B, C_2 \neq C$). Points A_3 , B_3 , C_3 are symmetric to A_1 , B_1 , C_1 with respect to the midpoints of the sides BC, CA, AB respectively. Prove that the triangles $A_2B_2C_2$ and $A_3B_3C_3$ are similar.

[hide="Comment"]This is my personal favourite of the ISL Geometry problems i!-s:D - i; mg src="SMILIES_PATH/icon_mrgreen.gif" alt = ": D"title = "Mr.Green"/><! --s: D - ->

10 Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

Number Theory

1 Determine all pairs (x, y) of integers such that

$$1 + 2^x + 2^{2x+1} = y^2.$$

- 2 For $x \in (0,1)$ let $y \in (0,1)$ be the number whose *n*-th digit after the decimal point is the 2^n -th digit after the decimal point of x. Show that if x is rational then so is y.
- 3 We define a sequence $(a_1, a_2, a_3, ...)$ by setting

$$a_n = \frac{1}{n} \left(\left[\frac{n}{1} \right] + \left[\frac{n}{2} \right] + \dots + \left[\frac{n}{n} \right] \right)$$

for every positive integer n. Hereby, for every real x, we denote by [x] the integral part of x (this is the greatest integer which is $\leq x$).

a) Prove that there is an infinite number of positive integers n such that $a_{n+1} > a_n$. b) Prove that there is an infinite number of positive integers n such that $a_{n+1} < a_n$.

- 4 Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x))\ldots))$, where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
- 5 Prove that the equation $\frac{x^7-1}{x-1} = y^5 1$ doesn't have integer solutions!
- 6 Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c, denoted by w(c) to be the minimal possible value of |x| + |y| taken over all pairs of integers x and y such that ax + by = c. An integer c is called a *local champion* if $w(c) \ge w(c \pm a)$ and $w(c) \ge w(c \pm b)$. Find all local champions and determine their number.
- 7 For all positive integers n, show that there exists a positive integer m such that n divides $2^m + m$.